Tag Archives: cold storage compressor

China Good quality Vr144ks-Tfp-522 Air Compressor for Cold Storage Cooling System air compressor oil

Product Description

 

PRODUCT DIAPLAY

 

PRODUCT DATA

 

Product Feature
The axial and radial flexibility technology of the CHINAMFG vortex ensures the compressor
Excellent reliability and efficiency
Broad product capacity range
Lower oil circulation rate
Superior resistance to liquid hammer
Lower noise and vibration levels
Lower LCCP (Life Cycle Climate Performance)
Dual machine parallel and triple machine parallel, with excellent seasonal energy efficiencyCompared to (needs to be verified or confirmed by CHINAMFG TM)

380-420V; 50Hz, 3 Phase              
Typical Model Nominal Power (HP) Nominal Capacity Input power (W) Current        (A) Displ  (cm3/rev) Weight   (kg) Height   (mm) Noise   (dBA)
(W) (Btu/h)
ZR24K3E-TFD 2 5,900 20,119 1,920 4.3 5.92 25.0  383 69.0 
ZR36K3E-TFD 3 8,900 30,349 2,680 5.7 8.61 28.0  406 71.0 
ZR42K3E-TFD 3.5 10,250 34,952 3,100 7.1 9.94 28.0  406 69.0 
ZR47K3E-TFD 3.92 11,550 39,385 3,430 7.2 11.16 30.0  436 71.0 
ZR61KCE-TFD 5.1 14,000 47,600 4,460 8.4 3.14 28.0  436 71.0 
ZR68KCE-TFD 5.7 14,800 54,000 5,100 8.9 3.11 39.0  436 72.0 
ZR72KCE-TFD 6 16,600 56,500 5,150 9.1 3.22 57.2  457 72.0 
ZR81KCE-TFD 6.8 18,600 63,500 5,990 10.9 3.17 39.0  457 72.0 
ZR94KCE-TFD 7.8 23,000 78,600 6,950 12.9 3.34 57.2  462 74.0 
ZR108KCE-TFD 9 28,800 88,100 7,580 13.8 3.4 59.9  497 74.0 
ZR125KCE-TFD 10.4 30,000 103,000 8,950 16 3.4 61.2  552 74.0 
ZR144KCE-TFD 12 34,500 118,000 10,150 17.7 3.4 61.2  552 75.0 
ZR160KCE-TFD 13.3 37,500 128,000 11,450 20.5 3.28 64.9  552 78.0 
ZR190KCE-TFD 15.8 44,000 150,000 13,650 26.5 3.22 66.2  552 82.0 
ZR250KCE-TWD 20.8 58,500 200,000 18,000 30.1 3.25 139.3  552 83.0 
ZR310KCE-TWD 25.8 72,500 248,000 22,300 37.9 3.25 160.1  552 85.0 
ZR380KCE-TWD 31.7 91,500 313,000 26,700 45.5 3.43 176.9  552 88.0 

MAIN PRIDUCTS

 

OUR COMPANY

 

CERTIFICATE

 

After-sales Service: 1 Year
Warranty: 12month
Installation Type: Movable Type
Lubrication Style: Oil-free
Cylinder Position: Vertical
Performance: Low Noice
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Good quality Vr144ks-Tfp-522 Air Compressor for Cold Storage Cooling System   air compressor oilChina Good quality Vr144ks-Tfp-522 Air Compressor for Cold Storage Cooling System   air compressor oil
editor by CX 2023-10-18